Multivariate empirical mode decomposition approach for adaptive denoising of fringe patterns.

نویسندگان

  • Xiang Zhou
  • Tao Yang
  • Haihua Zou
  • Hong Zhao
چکیده

An adaptive approach is presented for noise reduction of optical fringe patterns using multivariate empirical mode decomposition. Adjacent rows and columns of patterns are treated as multichannel signals and are decomposed into multiscale components. Fringe patterns are reconstructed with less noise by simply thresholding coefficients in different scales. The proposed approach can better concentrate local main components of fringe signals into single scale, compared with the conventional multiscale denoising method. A simulated pattern and an actual example are examined. Signal-to-noise ratio (SNR) of the simulated pattern is more than doubled.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EEG Artifact Removal System for Depression Using a Hybrid Denoising Approach

Introduction: Clinicians use several computer-aided diagnostic systems for depression to authorize their diagnosis. An electroencephalogram  (EEG) may be used as an objective tool for early diagnosis of depression and controlling it from reaching a severe and permanent state. However, artifact contamination reduces the accuracy in EEG signal processing systems. Methods: This work proposes a no...

متن کامل

Empirical Mode Decomposition based Adaptive Filtering for Orthogonal Frequency Division Multiplexing Channel Estimation

This paper presents an empirical mode decomposition (EMD) based adaptive filter (AF) for channel estimation in OFDM system.  In this method, length of channel impulse response (CIR) is first approximated using Akaike information criterion (AIC). Then, CIR is estimated using adaptive filter with EMD decomposed IMF of the received OFDM symbol. The correlation and kurtosis measures are used to sel...

متن کامل

Normalization of fringe patterns using the bidimensional empirical mode decomposition and the Hilbert transform.

We evaluate a data-driven technique to perform bias suppression and modulation normalization of fringe patterns. The proposed technique uses a bidimensional empirical mode decomposition method to decompose a fringe pattern in a set of intrinsic frequency modes and the partial Hilbert transform to characterize the local amplitude of the modes in order to perform the normalization. The performanc...

متن کامل

An Efficient Method for Knock Signal Denoising in Spark Ignition Engine

One of the factors that affects the efficiency and lifetime of spark ignited internal combustion engine is “knock”. Knock sensor is a commonly used to detect this phenomenon. However, noise, limits detection accuracy of this sensor. In this study, Empirical Mode Decomposition (EMD) method is introduced as a fully adaptive signal-based analysis. Then, based on weighting decomposition...

متن کامل

Self-adaptive image denoising based on bidimensional empirical mode decomposition (BEMD).

To better analyze images with the Gaussian white noise, it is necessary to remove the noise before image processing. In this paper, we propose a self-adaptive image denoising method based on bidimensional empirical mode decomposition (BEMD). Firstly, normal probability plot confirms that 2D-IMF of Gaussian white noise images decomposed by BEMD follow the normal distribution. Secondly, energy es...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics letters

دوره 37 11  شماره 

صفحات  -

تاریخ انتشار 2012